dc.contributor.author |
Yang, Xiao-Jun
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Lazaveric, Mihailo P.
|
|
dc.contributor.author |
Cajic, Milan S.
|
|
dc.date.accessioned |
2017-03-29T11:11:18Z |
|
dc.date.available |
2017-03-29T11:11:18Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Yang, X.H...et al. (2015). Fractal boundary value problems for integral and differential equations with local fractional operators. Thermal Science, 19(3), 959-966. http://dx.doi.org/10.2298/TSCI130717103Y |
tr_TR |
dc.identifier.issn |
0354-9836 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1513 |
|
dc.description.abstract |
In the present paper we investigate the fractal boundary value problems for the Fredholm and Volterra integral equations, heat conduction and wave equations by using the local fractional decomposition method. The operator is described by the local fractional operators. The four illustrative examples are given to elaborate the accuracy and reliability of the obtained results |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Vinca Inst Nuclear Sci. |
tr_TR |
dc.relation.isversionof |
10.2298/TSCI130717103Y |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.subject |
Local Fractional Decomposition Method |
tr_TR |
dc.subject |
Heat Conduction Equations |
tr_TR |
dc.subject |
Integral Equations |
tr_TR |
dc.subject |
Wave Equations |
tr_TR |
dc.subject |
Boundary Value Problems |
tr_TR |
dc.title |
Fractal boundary value problems for integral and differential equations with local fractional operators |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Thermal Science |
tr_TR |
dc.identifier.volume |
19 |
tr_TR |
dc.identifier.issue |
3 |
tr_TR |
dc.identifier.startpage |
959 |
tr_TR |
dc.identifier.endpage |
966 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |