dc.contributor.author |
Defterli, Özlem
|
|
dc.contributor.author |
D'Elia, Marta
|
|
dc.contributor.author |
Du, Quiang
|
|
dc.contributor.author |
Gunzburger, Max
|
|
dc.contributor.author |
Lehoucq, Rich
|
|
dc.contributor.author |
Meerschaert, Mark M.
|
|
dc.date.accessioned |
2017-04-18T08:51:49Z |
|
dc.date.available |
2017-04-18T08:51:49Z |
|
dc.date.issued |
2015-04 |
|
dc.identifier.citation |
Defterli, Ö...et al. (2015). Fractional diffusion on bounded domains. Fractional Calculus And Applied Analysis, 18(2), 242-360. http://dx.doi.org/10.1515/fca-2015-0023 |
tr_TR |
dc.identifier.issn |
1311-0454 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1518 |
|
dc.description.abstract |
The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Walter De Gruyter GMBH |
tr_TR |
dc.relation.isversionof |
10.1515/fca-2015-0023 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Fractional Diffusion |
tr_TR |
dc.subject |
Boundary Value Problem |
tr_TR |
dc.subject |
Nonlocal Diffusion |
tr_TR |
dc.subject |
Well-Posed Equation |
tr_TR |
dc.title |
Fractional diffusion on bounded domains |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Fractional Calculus And Applied Analysis |
tr_TR |
dc.identifier.volume |
18 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.identifier.startpage |
342 |
tr_TR |
dc.identifier.endpage |
360 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |