DSpace Repository

Local fractional similarity solution for the diffusion equation defined on Cantor sets

Show simple item record

dc.contributor.author Yang, Xiao-Jun
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Srivastava, H. M.
dc.date.accessioned 2017-04-18T10:57:40Z
dc.date.available 2017-04-18T10:57:40Z
dc.date.issued 2015-09
dc.identifier.citation Yang, X.J., Baleanu,D., Srivastava, H.M. (2015). Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 47, 54-60. http://dx.doi.org/10.1016/j.aml.2015.02.024 tr_TR
dc.identifier.issn 0893-9659
dc.identifier.uri http://hdl.handle.net/20.500.12416/1523
dc.description.abstract In this letter, the local fractional similarity solution is addressed for the non-differentiable diffusion equation. Structuring the similarity transformations via the rule of the local fractional partial derivative operators, we transform the diffusive operator into a similarity ordinary differential equation. The obtained result shows the non-differentiability of the solution suitable to describe the properties and behaviors of the fractal content. tr_TR
dc.language.iso eng tr_TR
dc.publisher Pergamon-Elsevier Science LTD tr_TR
dc.relation.isversionof 10.1016/j.aml.2015.02.024 tr_TR
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Similarity Solution tr_TR
dc.subject Diffusion Equation tr_TR
dc.subject Non-differentiability tr_TR
dc.subject Local Fractional Derivative tr_TR
dc.subject Local Fractional Partial Derivative Operators tr_TR
dc.title Local fractional similarity solution for the diffusion equation defined on Cantor sets tr_TR
dc.type article tr_TR
dc.relation.journal Applied Mathematics Letters tr_TR
dc.identifier.volume 47 tr_TR
dc.identifier.startpage 54 tr_TR
dc.identifier.endpage 60 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record