dc.contributor.author |
Yang, Xiao-Jun
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Srivastava, H. M.
|
|
dc.date.accessioned |
2017-04-18T10:57:40Z |
|
dc.date.available |
2017-04-18T10:57:40Z |
|
dc.date.issued |
2015-09 |
|
dc.identifier.citation |
Yang, X.J., Baleanu,D., Srivastava, H.M. (2015). Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 47, 54-60. http://dx.doi.org/10.1016/j.aml.2015.02.024 |
tr_TR |
dc.identifier.issn |
0893-9659 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1523 |
|
dc.description.abstract |
In this letter, the local fractional similarity solution is addressed for the non-differentiable diffusion equation. Structuring the similarity transformations via the rule of the local fractional partial derivative operators, we transform the diffusive operator into a similarity ordinary differential equation. The obtained result shows the non-differentiability of the solution suitable to describe the properties and behaviors of the fractal content. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Pergamon-Elsevier Science LTD |
tr_TR |
dc.relation.isversionof |
10.1016/j.aml.2015.02.024 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Similarity Solution |
tr_TR |
dc.subject |
Diffusion Equation |
tr_TR |
dc.subject |
Non-differentiability |
tr_TR |
dc.subject |
Local Fractional Derivative |
tr_TR |
dc.subject |
Local Fractional Partial Derivative Operators |
tr_TR |
dc.title |
Local fractional similarity solution for the diffusion equation defined on Cantor sets |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Applied Mathematics Letters |
tr_TR |
dc.identifier.volume |
47 |
tr_TR |
dc.identifier.startpage |
54 |
tr_TR |
dc.identifier.endpage |
60 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |