DSpace Repository

Particular solutions of the confluent hypergeometric differential equation by using the nabla fractional calculus operator

Show simple item record

dc.contributor.author Yılmazer, Reşat
dc.contributor.author İnç, Mustafa
dc.contributor.author Tchier, Fairouz
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2017-04-19T07:25:35Z
dc.date.available 2017-04-19T07:25:35Z
dc.date.issued 2016-02
dc.identifier.citation Yılmazer, R...et al. (2016). Particular solutions of the confluent hypergeometric differential equation by using the nabla fractional calculus operator. Entropy, 18(2). http://dx.doi.org/ 10.3390/e18020049 tr_TR
dc.identifier.issn 1099-4300
dc.identifier.uri http://hdl.handle.net/20.500.12416/1532
dc.description.abstract In this work; we present a method for solving the second-order linear ordinary differential equation of hypergeometric type. The solutions of this equation are given by the confluent hypergeometric functions (CHFs). Unlike previous studies, we obtain some different new solutions of the equation without using the CHFs. Therefore, we obtain new discrete fractional solutions of the homogeneous and non-homogeneous confluent hypergeometric differential equation (CHE) by using a discrete fractional Nabla calculus operator. Thus, we obtain four different new discrete complex fractional solutions for these equations. tr_TR
dc.language.iso eng tr_TR
dc.publisher MDPI AG tr_TR
dc.relation.isversionof 10.3390/e18020049 tr_TR
dc.rights info:eu-repo/semantics/openAccess
dc.subject Discrete Fractional Calculus tr_TR
dc.subject Confluent Hypergeometric Equation tr_TR
dc.subject Nabla Operator tr_TR
dc.title Particular solutions of the confluent hypergeometric differential equation by using the nabla fractional calculus operator tr_TR
dc.type article tr_TR
dc.relation.journal Entropy tr_TR
dc.identifier.volume 18 tr_TR
dc.identifier.issue 2 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record