DSpace Repository

New derivatives on the fractal subset of real-line

Show simple item record

dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2017-04-19T07:40:28Z
dc.date.available 2017-04-19T07:40:28Z
dc.date.issued 2016-02
dc.identifier.citation Golmankhaneh, A.R., Baleanu, D. (2016). New derivatives on the fractal subset of real-line. Entropy, 18(2). http://dx.doi.org/10.3390/e18020001 tr_TR
dc.identifier.issn 1099-4300
dc.identifier.uri http://hdl.handle.net/20.500.12416/1534
dc.description.abstract In this manuscript we introduced the generalized fractional Riemann-Liouville and Caputo like derivative for functions defined on fractal sets. The Gamma, Mittag-Leffler and Beta functions were defined on the fractal sets. The non-local Laplace transformation is given and applied for solving linear and non-linear fractal equations. The advantage of using these new nonlocal derivatives on the fractals subset of real-line lies in the fact that they are better at modeling processes with memory effect tr_TR
dc.language.iso eng tr_TR
dc.publisher MDPI AG tr_TR
dc.relation.isversionof 10.3390/e18020001 tr_TR
dc.rights info:eu-repo/semantics/openAccess
dc.subject Fractal Calculus tr_TR
dc.subject Triadic Cantor Set tr_TR
dc.subject Non-local Laplace Transformation tr_TR
dc.subject Memory Processes tr_TR
dc.subject Generalized Mittag-Leffler Function tr_TR
dc.subject Generalized Gamma Function tr_TR
dc.subject Generalized Beta Function tr_TR
dc.title New derivatives on the fractal subset of real-line tr_TR
dc.type article tr_TR
dc.relation.journal Entropy tr_TR
dc.identifier.volume 18 tr_TR
dc.identifier.issue 2 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record