dc.contributor.author |
Golmankhaneh, Alireza K.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2017-04-19T07:40:28Z |
|
dc.date.available |
2017-04-19T07:40:28Z |
|
dc.date.issued |
2016-02 |
|
dc.identifier.citation |
Golmankhaneh, A.R., Baleanu, D. (2016). New derivatives on the fractal subset of real-line. Entropy, 18(2). http://dx.doi.org/10.3390/e18020001 |
tr_TR |
dc.identifier.issn |
1099-4300 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1534 |
|
dc.description.abstract |
In this manuscript we introduced the generalized fractional Riemann-Liouville and Caputo like derivative for functions defined on fractal sets. The Gamma, Mittag-Leffler and Beta functions were defined on the fractal sets. The non-local Laplace transformation is given and applied for solving linear and non-linear fractal equations. The advantage of using these new nonlocal derivatives on the fractals subset of real-line lies in the fact that they are better at modeling processes with memory effect |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
MDPI AG |
tr_TR |
dc.relation.isversionof |
10.3390/e18020001 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.subject |
Fractal Calculus |
tr_TR |
dc.subject |
Triadic Cantor Set |
tr_TR |
dc.subject |
Non-local Laplace Transformation |
tr_TR |
dc.subject |
Memory Processes |
tr_TR |
dc.subject |
Generalized Mittag-Leffler Function |
tr_TR |
dc.subject |
Generalized Gamma Function |
tr_TR |
dc.subject |
Generalized Beta Function |
tr_TR |
dc.title |
New derivatives on the fractal subset of real-line |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Entropy |
tr_TR |
dc.identifier.volume |
18 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |