DSpace Repository

Einstein field equations within local fractional calculus

Show simple item record

dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Yang, Xiao-Jun
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2017-04-19T11:27:36Z
dc.date.available 2017-04-19T11:27:36Z
dc.date.issued 2015
dc.identifier.citation Golmankhaneh, A.K., Yang, X.J., Baleanu, D. (2015). Einstein field equations within local fractional calculus. Romanian Journal of Physics, 60(1-2), 22-31. tr_TR
dc.identifier.issn 1221-146X
dc.identifier.uri http://hdl.handle.net/20.500.12416/1542
dc.description.abstract In this paper, we introduce the local fractional Christoffel index symbols of the first and second kind. The divergence of a local fractional contravariant vector and the curl of local fractional covariant vector are defined. The fractional intrinsic derivative is given. The local fractional Riemann-Christoffel and Ricci tensors are obtained. Finally, the Einstein tensor and Einstein field are generalized by involving the fractional derivatives. Illustrative examples are presented tr_TR
dc.language.iso eng tr_TR
dc.publisher Editura Acad Romane tr_TR
dc.rights info:eu-repo/semantics/embargoedAccess
dc.subject Local Fractional Christoffel Index tr_TR
dc.subject Local Fractional Riemann-Christoffel Tensor tr_TR
dc.subject Local Fractional Ricci Tensor tr_TR
dc.subject Local Fractional Einstein Field tr_TR
dc.title Einstein field equations within local fractional calculus tr_TR
dc.type article tr_TR
dc.relation.journal Romanian Journal of Physics tr_TR
dc.identifier.volume 60 tr_TR
dc.identifier.issue 1-2 tr_TR
dc.identifier.startpage 22 tr_TR
dc.identifier.endpage 31 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record