dc.contributor.author |
Golmankhaneh, Alireza K.
|
|
dc.contributor.author |
Yang, Xiao-Jun
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2017-04-19T11:27:36Z |
|
dc.date.available |
2017-04-19T11:27:36Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Golmankhaneh, A.K., Yang, X.J., Baleanu, D. (2015). Einstein field equations within local fractional calculus. Romanian Journal of Physics, 60(1-2), 22-31. |
tr_TR |
dc.identifier.issn |
1221-146X |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1542 |
|
dc.description.abstract |
In this paper, we introduce the local fractional Christoffel index symbols of the first and second kind. The divergence of a local fractional contravariant vector and the curl of local fractional covariant vector are defined. The fractional intrinsic derivative is given. The local fractional Riemann-Christoffel and Ricci tensors are obtained. Finally, the Einstein tensor and Einstein field are generalized by involving the fractional derivatives. Illustrative examples are presented |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Editura Acad Romane |
tr_TR |
dc.rights |
info:eu-repo/semantics/embargoedAccess |
|
dc.subject |
Local Fractional Christoffel Index |
tr_TR |
dc.subject |
Local Fractional Riemann-Christoffel Tensor |
tr_TR |
dc.subject |
Local Fractional Ricci Tensor |
tr_TR |
dc.subject |
Local Fractional Einstein Field |
tr_TR |
dc.title |
Einstein field equations within local fractional calculus |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Romanian Journal of Physics |
tr_TR |
dc.identifier.volume |
60 |
tr_TR |
dc.identifier.issue |
1-2 |
tr_TR |
dc.identifier.startpage |
22 |
tr_TR |
dc.identifier.endpage |
31 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |