Özet:
In this study, a new hybrid electrochemical drilling (ECD) method, based on electrochemical machining in nonconventional machining processes, was developed. In the developed method, tube tool makes rotary motion together with inner through hole flushing. A small scale prototype ECD machine has been designed and manufactured to test the developed method. One of the important features of the new system is the regulation of tool feed rate using current feedback control. The Hadfield (manganese) steel, whose strain hardening behavior makes it very difficult to machine with conventional methods, and AISI 1040 steel, whose machinability is fairly good, were drilled using the prototype machine and results were compared. Workpiece material removal rate increased with the increasing machining voltage, tool rotational speed, electrolyte concentration and flushing pressure in both types of steels. Average radial overcut values increased with the rotational speed of the tool. The AISI 1040 steel hole geometries were regular than that of Hadfield steel. Experimental results showed that deep holes can be drilled successfully with the proposed hybrid ECD method