dc.contributor.author |
Uğurlu, Ekin
|
|
dc.contributor.author |
Bairamov, Elgiz
|
tr_TR |
dc.date.accessioned |
2018-09-12T08:04:18Z |
|
dc.date.available |
2018-09-12T08:04:18Z |
|
dc.date.issued |
2017-06 |
|
dc.identifier.citation |
Uğurlu, E. (2017). The spectral analysis of a nuclear resolvent operator associated with a second order dissipative differential operator. Computational Methods And Function Theory, 17(2), 237-253. http://dx.doi.org/10.1007/s40315-016-0185-8 |
tr_TR |
dc.identifier.issn |
1617-9447 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1696 |
|
dc.description.abstract |
In this paper, we introduce a new approach for the spectral analysis of a linear second order dissipative differential operator with distributional potentials. This approach is related with the inverse operator. We show that the inverse operator is a non-selfadjoint trace class operator. Using Lidskii's theorem, we introduce a complete spectral analysis of the second order dissipative differential operator. Moreover, we give a trace formula for the trace class integral operator. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Springer |
tr_TR |
dc.relation.isversionof |
10.1007/s40315-016-0185-8 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Dissipative Operators |
tr_TR |
dc.subject |
Trace Class Operator |
tr_TR |
dc.subject |
Nuclear Operator |
tr_TR |
dc.subject |
Hilbert-Schmidt Operator |
tr_TR |
dc.subject |
Completeness Theorem |
tr_TR |
dc.title |
The spectral analysis of a nuclear resolvent operator associated with a second order dissipative differential operator |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Computational Methods And Function Theory |
tr_TR |
dc.contributor.authorID |
238990 |
tr_TR |
dc.identifier.volume |
17 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.identifier.startpage |
237 |
tr_TR |
dc.identifier.endpage |
253 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |