DSpace@Çankaya

Large-scale hyperspectral image compression via sparse representations based on online learning

Basit öğe kaydını göster

dc.contributor.author Ülkü, İrem
dc.contributor.author Kizgut, Ersin
dc.date.accessioned 2018-09-12T13:15:57Z
dc.date.available 2018-09-12T13:15:57Z
dc.date.issued 2018-03
dc.identifier.citation Ülkü, İ., Kizgut, E. (2018). Large-scale hyperspectral image compression via sparse representations based on online learning. International Journal Of Applied Mathematics And Computer Science, 28(1), 197-207. http://dx.doi.org/10.2478/amcs-2018-0015 tr_TR
dc.identifier.issn 1641-876X tr_TR
dc.identifier.uri http://hdl.handle.net/20.500.12416/1716
dc.description.abstract In this study, proximity based optimization algorithms are used for lossy compression of hyperspectral images that are inherently large scale. This is the first time that such proximity based optimization algorithms are implemented with an online dictionary learning method. Compression performances are compared with the one obtained by various sparse representation algorithms. As a result, proximity based optimization algorithms are listed among the three best ones in terms of compression performance values for all hyperspectral images. Additionally, the applicability of anomaly detection is tested on the reconstructed images. tr_TR
dc.language.iso eng tr_TR
dc.publisher Univ Zielona Gora Press tr_TR
dc.relation.isversionof 10.2478/amcs-2018-0015 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Hyperspectral Imaging tr_TR
dc.subject Compression Algorithms tr_TR
dc.subject Dictionary Learning tr_TR
dc.subject Sparse Coding tr_TR
dc.title Large-scale hyperspectral image compression via sparse representations based on online learning tr_TR
dc.type article tr_TR
dc.relation.journal International Journal Of Applied Mathematics And Computer Science tr_TR
dc.contributor.authorID 17575 tr_TR
dc.identifier.volume 28 tr_TR
dc.identifier.issue 1 tr_TR
dc.identifier.startpage 197 tr_TR
dc.identifier.endpage 207 tr_TR
dc.contributor.department Çankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster