Özet:
We examine the mode coupling in vortex beams. Mode coupling also known as the crosstalk takes place due to turbulent characteristics of the atmospheric communication medium. This way, the transmitted intrinsic mode of the vortex beam leaks power to other extrinsic modes, thus preventing the correct detection of the transmitted symbol which is usually encoded into the mode index or the orbital angular momentum state of the vortex beam. Here we investigate the normalized power mode coupling ratios of several types of vortex beams, namely, Gaussian vortex beam, Bessel Gaussian beam, hypergeometric Gaussian beam and Laguerre Gaussian beam. It is found that smaller mode numbers lead to less mode coupling. The same is partially observed for increasing source sizes. Comparing the vortex beams amongst themselves, it is seen that hypergeometric Gaussian beam is the one retaining the most power in intrinsic mode during propagation, but only at lowest mode index of unity. At higher mode indices this advantage passes over to the Gaussian vortex beam.