dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Moghaddam, Mehdi
|
|
dc.contributor.author |
Mohammadi, Hakimeh
|
|
dc.contributor.author |
Rezapour, Shahram
|
|
dc.date.accessioned |
2018-09-26T07:13:08Z |
|
dc.date.available |
2018-09-26T07:13:08Z |
|
dc.date.issued |
2016-09 |
|
dc.identifier.citation |
Baleanu, D...et al. (2016). A fractional derivative inclusion problem via an integral boundary condition. Journal of Computational Analysis and Applications, 21(3), 504-514. |
tr_TR |
dc.identifier.issn |
1521-1398 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1784 |
|
dc.description.abstract |
We investigate the existence of solutions for the fractional differential inclusion (c)D(alpha)x(t) is an element of F(t, x(t)) (equipped with the boundary value problems x(0) = 0 and x(1) = integral(eta)(0) x(s)ds, where 0 < eta < 1, 1 < alpha <= 2, D-c(alpha) is the standard Caputo differentiation and F : [0, 1] x R -> 2(R) is a compact valued multifunction. An illustrative example is also discussed. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Eudoxus Press |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Fixed Point |
tr_TR |
dc.subject |
Fractional Differential Inclusion |
tr_TR |
dc.subject |
Integral Boundary Value Problem |
tr_TR |
dc.title |
A fractional derivative inclusion problem via an integral boundary condition |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of Computational Analysis and Applications |
tr_TR |
dc.identifier.volume |
21 |
tr_TR |
dc.identifier.issue |
3 |
tr_TR |
dc.identifier.startpage |
504 |
tr_TR |
dc.identifier.endpage |
514 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |