Bu tez çalışmasında, bazı kesirli türevlerin (örn. Riemann-Liouville, Caputo ) temelleri Gru ̈nwald–Letnikov tanımlarına dayanan ilgili yaklaşığıyla beraber çalışılmıştır. Daha sonra, kesirli optimal kontrol probleminin temelleri, formulasyon da verilen kısıtlamaların ve optimalite koşullarının tanımlanmasında kullanılan bu kesirli türevler aracılığıyla sunulmaktadır. Göz önüne alınan kesirli türevlerin yaklaşığı için yeni orthogonal polinomların integrasyonu anlamında kesirli optimal kontrol problemlerinin sayısal çözümleri için bazı yeni yönelimler üzerinde çalışılmıştır. Bu bağlamda, Bernstein polinomları, kaydırılmış Chebyshev polinomları ve kaydırılmış Legendre ortonormal polinomları Legendre-Gauss kareleme yöntemin içerisinde kesirli optimal kontrol probleminin formülasyonundan gelen Caputo tabanlı kesirli kısmi diferansiyel denklemleri sayısal olarak çözmek için kullanılmaktadır.Verilen control fonksiyonlarına dayanan iki dinamik sistem, açıklayıcı örnekler olarak ele alınmış ve sistemlerin ilişkili gelen karşılığı, kesirli türevler altında sunulmuş, daha sonra klasik türev ile karşılaştırılmıştır. Sayısal sonuçlardan ve verilen simülasyonlardan system cevabının, kesirli türevin derecesi azaldıkça t değişkeninin bazı noktalarında arttığı gözlemlenmiştir.
In this thesis, I study the basics of some fractional derivatives (e. g. RiemannLiouville, Caputo) with the corresponding approximation based on Gr��̈nwaldLetnikov definitions. Later, the fundamentals of fractional optimal control problem
are presented via mentioned fractional derivatives which are used in the definition of
constraints and optimality conditions given through the formulation. Some new
aspects are studied for the numerical solutions of fractional optimal control problems
in the sense of integrating new orthogonal polynomials to approximate the
considered fractional derivatives. In this respect, Bernstein polynomials, shifted
Chebyshev polynomials and shifted Legendre orthonormal polynomials are newly
used within the Legendre-Gauss quadrature method in order to approximate and
solve numerically the Caputo based fractional partial differential equations coming
from the formulation of fractional optimal control problem. Two dynamical systems
are considered as illustrative examples based on the given control functions and the
corresponding responses of the systems are presented under fractional derivatives.
Then the comparison with the classical derivative is discussed. It is observed from
numerical results and presented simulations that the system response increases as the
fractional order of the derivative decreases for the same point of the variable t.