Özet:
In this work, we consider the motion of a heavy particle sliding on a rotating wire. The first step carried for this model is writing the classical and fractional Lagrangian. Secondly, the fractional Hamilton's equations (FHEs) of motion of the system is derived. The fractional equations are formulated in the sense of Caputo. Thirdly, numerical simulations of the FHEs within the fractional operators are presented and discussed for some fractional derivative orders. Numerical results are based on a discretization scheme using the Euler convolution quadrature rule for the discretization of the convolution integral. Finally, simulation results verify that, taking into account the fractional calculus provides more flexible models demonstrating new aspects of the real world phenomena.