DSpace Repository

Diffusion on Middle- Cantor Sets

Show simple item record

dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Fernandez, Arran
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2019-12-20T12:37:12Z
dc.date.available 2019-12-20T12:37:12Z
dc.date.issued 2018-07
dc.identifier.citation Golmankhaneh, Alireza Khalili; Fernandez, Arran; Golmankhaneh, Ali Khalili; et al. (2018). Diffusion on Middle- Cantor Sets, Entropy, 20(7). tr_TR
dc.identifier.issn 1099-4300
dc.identifier.uri http://hdl.handle.net/20.500.12416/2235
dc.description.abstract In this paper, we study C-calculus on generalized Cantor sets, which have self-similar properties and fractional dimensions that exceed their topological dimensions. Functions with fractal support are not differentiable or integrable in terms of standard calculus, so we must involve local fractional derivatives. We have generalized the C-calculus on the generalized Cantor sets known as middle- Cantor sets. We have suggested a calculus on the middle- Cantor sets for different values of with 0<<1. Differential equations on the middle- Cantor sets have been solved, and we have presented the results using illustrative examples. The conditions for super-, normal, and sub-diffusion on fractal sets are given. tr_TR
dc.language.iso eng tr_TR
dc.publisher MDPI tr_TR
dc.relation.isversionof 10.3390/e20070504 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Hausdorff Dimension tr_TR
dc.subject Middle- Cantor Sets tr_TR
dc.subject Staircase Function tr_TR
dc.subject C-Calculus tr_TR
dc.subject Diffusion on Fractal tr_TR
dc.subject Random Walk tr_TR
dc.title Diffusion on Middle- Cantor Sets tr_TR
dc.type article tr_TR
dc.relation.journal Entropy tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 20 tr_TR
dc.identifier.issue 7 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik - Bilgisayar Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record