DSpace@Çankaya

Coordinate-Free Approach for the Model Operator Associated With a Third-Order Dissipative Operator

Basit öğe kaydını göster

dc.contributor.author Uğurlu, Ekin
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2019-12-26T12:21:12Z
dc.date.available 2019-12-26T12:21:12Z
dc.date.issued 2019-07-10
dc.identifier.citation Ugurlu, Ekin; Baleanu, Dumitru, "Coordinate-Free Approach for the Model Operator Associated With a Third-Order Dissipative Operator", Frontiers in Physics, Vol. 7, (July 2019). tr_TR
dc.identifier.issn 2296-424X
dc.identifier.uri http://hdl.handle.net/20.500.12416/2304
dc.description.abstract In this paper we investigate the spectral properties of a third-order differential operator generated by a formally-symmetric differential expression and maximal dissipative boundary conditions. In fact, using the boundary value space of the minimal operator we introduce maximal selfadjoint and maximal non-selfadjoint (dissipative, accumulative) extensions. Using Solomyak's method on characteristic function of the contractive operator associated with a maximal dissipative operator we obtain some results on the root vectors of the dissipative operator. Finally, we introduce the selfadjoint dilation of the maximal dissipative operator and incoming and outgoing eigenfunctions of the dilation. tr_TR
dc.language.iso eng tr_TR
dc.publisher Frontiers Media S.A. tr_TR
dc.relation.isversionof 10.3389/fphy.2019.00099 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Coordinate-Free Approach tr_TR
dc.subject Model Operator tr_TR
dc.subject Characteristic Function tr_TR
dc.subject Spectral Analysis tr_TR
dc.subject Dissipative Operator tr_TR
dc.title Coordinate-Free Approach for the Model Operator Associated With a Third-Order Dissipative Operator tr_TR
dc.type article tr_TR
dc.relation.journal Frontiers in Physics tr_TR
dc.contributor.authorID 56389 tr_TR
dc.contributor.authorID 238990 tr_TR
dc.identifier.volume 7 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik - Bilgisayar Bölümü tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster