DSpace Repository

Some New Fractional-Calculus Connections between Mittag-Leffler Functions

Show simple item record

dc.contributor.author Srivastava, H. M.
dc.contributor.author Fernandez, Arran
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2019-12-27T12:16:37Z
dc.date.available 2019-12-27T12:16:37Z
dc.date.issued 2019-06
dc.identifier.citation Srivastava, Hari M.; Fernandez, Arran; Baleanu, Dumitru, "Some New Fractional-Calculus Connections between Mittag-Leffler Functions", Mathematics, Vol. 7, No. 6, (June 2019). tr_TR
dc.identifier.issn 2227-7390
dc.identifier.uri http://hdl.handle.net/20.500.12416/2316
dc.description.abstract We consider the well-known Mittag-Leffler functions of one, two and three parameters, and establish some new connections between them using fractional calculus. In particular, we express the three-parameter Mittag-Leffler function as a fractional derivative of the two-parameter Mittag-Leffler function, which is in turn a fractional integral of the one-parameter Mittag-Leffler function. Hence, we derive an integral expression for the three-parameter one in terms of the one-parameter one. We discuss the importance and applications of all three Mittag-Leffler functions, with a view to potential applications of our results in making certain types of experimental data much easier to analyse. tr_TR
dc.language.iso eng tr_TR
dc.publisher MDPI tr_TR
dc.relation.isversionof 10.3390/math7060485 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Fractional Integrals tr_TR
dc.subject Fractional Derivatives tr_TR
dc.subject Mittag-Leffler Functions tr_TR
dc.title Some New Fractional-Calculus Connections between Mittag-Leffler Functions tr_TR
dc.type article tr_TR
dc.relation.journal Mathematics tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 7 tr_TR
dc.identifier.issue 6 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik - Bilgisayar Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record