Abstract:
In this article, we prove Lyapunov type inequalities for a nonlocal fractional derivative, called fractional proportional derivative, generated by modified conformable or proportional derivatives in both Riemann-Liuoville and Caputo senses. Further, in the Riemann-Liuoville case we prove a Lyapunov inequality for a fractional proportional weighted boundary value problem and apply it on a weighted Sturm-Liouville problem to estimate an upper bound for the free zero disk of the Kilbas-Saigo Mittag-Leffler functions of three parameters. The proven results generalize and modify previously obtained results in the literature.