Abstract:
Atmospheric turbulence is one of the significant phenomena that degrades the free space optical (FSO) communications system performance, and thus designers need to define the requirements related to turbulence and optimize the system design to ensure optimum performance. The subcarrier intensity modulation (SIM) shows superiority in terms of bandwidth usage over the other modulation techniques. Performance of FSO communication systems exercising M-ary phase-shift-keying (PSK) SIM with the PIN photodiode receiver is evaluated in non-Kolmogorov strong atmospheric turbulence when a Gaussian beam is used as the excitation. Bit-error-rate (BER) of PSK SIM FSO communication systems is examined, and the results are presented versus the non-Kolmogorov atmospheric turbulence and positive-intrinsic-negative (PIN) photodetector parameters such as PIN photodetector responsivity, equivalent load resistor, modulation order, noise factor, bandwidth, propagation distance, and beam source size. (C) 2019 Optical Society of America