DSpace Repository

Integrability, invariant and soliton solutions of generalized Kadomtsev-Petviashvili-modified equal width equation

Show simple item record

dc.contributor.author Hashemi, M. S.
dc.contributor.author Haji-Badali, A.
dc.contributor.author Alizadeh, F.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-02-18T08:33:37Z
dc.date.available 2020-02-18T08:33:37Z
dc.date.issued 2017
dc.identifier.citation Hashemi, M. S...et al. (2017). "Integrability, invariant and soliton solutions of generalized Kadomtsev-Petviashvili-modified equal width equation", Optik, Vol: 139, pp.30-40. tr_TR
dc.identifier.issn 0030-4026
dc.identifier.uri http://hdl.handle.net/20.500.12416/2480
dc.description.abstract In this paper, the Painleve analysis is applied to test the integrability of the generalized Kadomtsev-Petviashvili-modified equal width (KP-MEW) equation with time dependent coefficients. Symmetry reductions and some corresponding invariant solutions in the integrable cases are completely considered. Soliton solutions of constant variables case in two integrable cases are reported. tr_TR
dc.language.iso eng tr_TR
dc.publisher Elsevier GMBH tr_TR
dc.relation.isversionof 10.1016/j.ijleo.2017.03.114 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Painleve Test tr_TR
dc.subject Generalized KP-MEW Equation tr_TR
dc.subject Variable Coefficient tr_TR
dc.subject Soliton Solution tr_TR
dc.subject Lie Symmetry Analysis tr_TR
dc.title Integrability, invariant and soliton solutions of generalized Kadomtsev-Petviashvili-modified equal width equation tr_TR
dc.type article tr_TR
dc.relation.journal Optik tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 139 tr_TR
dc.identifier.startpage 20 tr_TR
dc.identifier.endpage 30 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record