DSpace Repository

Existence results for fractional evolution systems with riemann-liouville fractional derivatives and nonlocal conditions

Show simple item record

dc.contributor.author Kalamani, P.
dc.contributor.author Arjunan, M. Mallika
dc.contributor.author Mallika, D.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-02-21T11:19:23Z
dc.date.available 2020-02-21T11:19:23Z
dc.date.issued 2017
dc.identifier.citation Kalamani, P...et al. (2017). "Existence results for fractional evolution systems with riemann-liouville fractional derivatives and nonlocal conditions", Fundamenta Informaticae,Vol. 151, No. 1-4, pp. 487-504. tr_TR
dc.identifier.issn 0169-2968
dc.identifier.uri http://hdl.handle.net/20.500.12416/2491
dc.description.abstract Based on concepts for semigroup theory, fractional calculus, Banach contraction principle and Krasnoselskii fixed point theorem (FPT), this manuscript is principally involved with existence results of Riemann-Liouville (RL) fractional neutral integro-differential systems (FNIDS) with nonlocal conditions (NLCs) in Banach spaces. An example is offered to demonstrate the theoretical concepts. tr_TR
dc.language.iso eng tr_TR
dc.publisher IOS Press tr_TR
dc.relation.isversionof 10.3233/FI-2017-1506 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Fractional Order Integro-Differential Equations tr_TR
dc.subject Riemann-Liouville Fractional Derivatives tr_TR
dc.subject Fixed Point tr_TR
dc.subject Semigroup Theory tr_TR
dc.title Existence results for fractional evolution systems with riemann-liouville fractional derivatives and nonlocal conditions tr_TR
dc.type article tr_TR
dc.relation.journal Fundamenta Informaticae tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 151 tr_TR
dc.identifier.issue 1-4 tr_TR
dc.identifier.startpage 487 tr_TR
dc.identifier.endpage 504 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record