DSpace Repository

A new fractional derivative involving the normalized sinc function without singular kernel

Show simple item record

dc.contributor.author Yang, Xiao-Jun
dc.contributor.author Gao, Feng
dc.contributor.author Machado, J. A. Tenreiro
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-02-28T11:40:49Z
dc.date.available 2020-02-28T11:40:49Z
dc.date.issued 2017-12
dc.identifier.citation Yang, Xiao-Jun...et al. (2017). "A new fractional derivative involving the normalized sinc function without singular kernel", Europan Physical Journal Special-Topic, Vol.226, No.16-18, pp.3567-3575. tr_TR
dc.identifier.issn 1951-6355
dc.identifier.uri http://hdl.handle.net/20.500.12416/2553
dc.description.abstract In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems. tr_TR
dc.language.iso eng tr_TR
dc.publisher Springer Heidelberg tr_TR
dc.relation.isversionof 10.1140/epjst/e2018-00020-2 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Diffusion tr_TR
dc.subject Equation tr_TR
dc.subject Relaxation tr_TR
dc.subject Calculus tr_TR
dc.subject Models tr_TR
dc.title A new fractional derivative involving the normalized sinc function without singular kernel tr_TR
dc.type article tr_TR
dc.relation.journal Europan Physical Journal Special-Topic tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 226 tr_TR
dc.identifier.issue 16-18 tr_TR
dc.identifier.startpage 3567 tr_TR
dc.identifier.endpage 3575 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record