dc.contributor.author |
Yang, Xiao-Jun
|
|
dc.contributor.author |
Gao, Feng
|
|
dc.contributor.author |
Machado, J. A. Tenreiro
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2020-02-28T11:40:49Z |
|
dc.date.available |
2020-02-28T11:40:49Z |
|
dc.date.issued |
2017-12 |
|
dc.identifier.citation |
Yang, Xiao-Jun...et al. (2017). "A new fractional derivative involving the normalized sinc function without singular kernel", Europan Physical Journal Special-Topic, Vol.226, No.16-18, pp.3567-3575. |
tr_TR |
dc.identifier.issn |
1951-6355 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/2553 |
|
dc.description.abstract |
In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Springer Heidelberg |
tr_TR |
dc.relation.isversionof |
10.1140/epjst/e2018-00020-2 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Diffusion |
tr_TR |
dc.subject |
Equation |
tr_TR |
dc.subject |
Relaxation |
tr_TR |
dc.subject |
Calculus |
tr_TR |
dc.subject |
Models |
tr_TR |
dc.title |
A new fractional derivative involving the normalized sinc function without singular kernel |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Europan Physical Journal Special-Topic |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
226 |
tr_TR |
dc.identifier.issue |
16-18 |
tr_TR |
dc.identifier.startpage |
3567 |
tr_TR |
dc.identifier.endpage |
3575 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |