dc.contributor.author |
Wu, Guo-Cheng
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Xie, He-Ping
|
|
dc.contributor.author |
Zeng, Sheng-Da
|
|
dc.date.accessioned |
2020-03-03T10:45:31Z |
|
dc.date.available |
2020-03-03T10:45:31Z |
|
dc.date.issued |
2017-11-30 |
|
dc.identifier.citation |
Wu, Guo-Cheng...et al. (2017). "Lattice fractional diffusion equation of random order", Mathematical Methods In The Applied Sciences, Vol.40, No:17, pp.6054-6060. |
tr_TR |
dc.identifier.issn |
0170-4214 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/2581 |
|
dc.description.abstract |
The discrete fractional calculus is used to fractionalize difference equations. Simulations of the fractional logistic map unravel that the chaotic solution is conveniently obtained. Then a Riesz fractional difference is defined for fractional partial difference equations on discrete finite domains. A lattice fractional diffusion equation of random order is proposed to depict the complicated random dynamics and an explicit numerical formulae is derived directly from the Riesz difference. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Wiley |
tr_TR |
dc.relation.isversionof |
10.1002/mma.3644 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Discrete Fractional Calculus |
tr_TR |
dc.subject |
Lattice Fractional Diffusion Equations |
tr_TR |
dc.subject |
Variable Order |
tr_TR |
dc.subject |
Riesz Difference |
tr_TR |
dc.title |
Lattice fractional diffusion equation of random order |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Mathematical Methods In The Applied Sciences |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
40 |
tr_TR |
dc.identifier.issue |
17 |
tr_TR |
dc.identifier.startpage |
6054 |
tr_TR |
dc.identifier.endpage |
6060 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |