Abstract:
In this article, we analytically furnish the solution of (2 + 1)-dimensional fractional differential equations, with distinct fractal-memory indices in all coordinates, as a trivariate (alpha, beta, gamma)-fractional power series representation. The method is tested on several physical models with inherited memories. Moreover, a version of Taylor's theorem in fractal three-dimensional space is presented. As a special case, the solutions of the corresponding integer-order cases are extracted by letting alpha, beta, gamma -> 1, which indicates to some extent for a sequential memory.