DSpace@Çankaya

On artificial neural networks approach with new cost functions

Basit öğe kaydını göster

dc.contributor.author Jafarian, Ahmad
dc.contributor.author Nia, Safa Measoomy
dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-03-17T13:30:08Z
dc.date.available 2020-03-17T13:30:08Z
dc.date.issued 2018-12-15
dc.identifier.citation Jafarian, Ahmad...et al. (2018). "On artificial neural networks approach with new cost functions", Applied Mathematics and Computation, Vol. 339, pp. 546-555. tr_TR
dc.identifier.issn 0096-3003
dc.identifier.uri http://hdl.handle.net/20.500.12416/2651
dc.description.abstract In this manuscript, the artificial neural networks approach involving generalized sigmoid function as a cost function, and three-layered feed-forward architecture is considered as an iterative scheme for solving linear fractional order ordinary differential equations. The supervised back-propagation type learning algorithm based on the gradient descent method, is able to approximate this a problem on a given arbitrary interval to any desired degree of accuracy. To be more precise, some test problems are also given with the comparison to the simulation and numerical results given by another usual method. (C) 2018 Elsevier Inc. All rights reserved. tr_TR
dc.language.iso eng tr_TR
dc.publisher Elsevier Science INC tr_TR
dc.relation.isversionof 10.1016/j.amc.2018.07.053 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Fractional Order Ordinary Differential Equation tr_TR
dc.subject Artificial Neural Networks Approach tr_TR
dc.subject Least Mean Squares Cost Function tr_TR
dc.subject Supervised Back-Propagation Learning Algorithm tr_TR
dc.title On artificial neural networks approach with new cost functions tr_TR
dc.type article tr_TR
dc.relation.journal Applied Mathematics and Computation tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 339 tr_TR
dc.identifier.startpage 546 tr_TR
dc.identifier.endpage 555 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster