dc.contributor.author |
Arshad, Sadia
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Huang, Jianfei
|
|
dc.contributor.author |
Tang, Yifa
|
|
dc.contributor.author |
Zhao, Yue
|
|
dc.date.accessioned |
2020-03-18T13:48:41Z |
|
dc.date.available |
2020-03-18T13:48:41Z |
|
dc.date.issued |
2018-11 |
|
dc.identifier.citation |
Arshad, Sadia...et al. (2018). "A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations", East Asian Journal on Applied Mathematics, Vol. 8, No. 4, pp. 764-781. |
tr_TR |
dc.identifier.issn |
2079-7362 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/2679 |
|
dc.description.abstract |
A finite difference method for a class of time-space fractional diffusion equations is considered. The trapezoidal formula and a fourth-order fractional compact difference scheme are, respectively, used in temporal and spatial discretisations and the method stability is studied. Theoretical estimates of the convergence in the L-2 -norm are shown to be O(tau(2) + h(4)), where tau and h are time and space mesh sizes. Numerical examples confirm theoretical results. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Global Science Press |
tr_TR |
dc.relation.isversionof |
10.4208/eajam.280218.210518 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Fractional Diffusion Equation |
tr_TR |
dc.subject |
Riesz Derivative |
tr_TR |
dc.subject |
High-Order Approximation |
tr_TR |
dc.subject |
Stability |
tr_TR |
dc.subject |
Convergence |
tr_TR |
dc.title |
A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
East Asian Journal on Applied Mathematics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
8 |
tr_TR |
dc.identifier.issue |
4 |
tr_TR |
dc.identifier.startpage |
764 |
tr_TR |
dc.identifier.endpage |
781 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |