DSpace@Çankaya

Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations

Basit öğe kaydını göster

dc.contributor.author Yusuf, Abdullahi
dc.contributor.author İnç, Mustafa
dc.contributor.author Aliyu, Aliyu Isa
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-03-18T13:48:48Z
dc.date.available 2020-03-18T13:48:48Z
dc.date.issued 2018-11
dc.identifier.citation Yusuf, Abdullahi...et al. (2018). "Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations", Chaos Solitons & Fractals, Vol. 116, pp. 220-226. tr_TR
dc.identifier.issn 0960-0779
dc.identifier.uri http://hdl.handle.net/20.500.12416/2682
dc.description.abstract In this work, the efficiency of the Atangana-Baleanu (AB) derivative over Caputo-Fabrizio (CF) to some nonlinear partial differential equation is presented. The considered equations are Rosenou-Haynam equation (RHE) and a class of mKdV (CmKdV) equation. The effective and efficient technique called the fractional homotopy perturbation transform method (FHPTM) is applied for the investigation of the governing equations. (C) 2018 Elsevier Ltd. All rights reserved. tr_TR
dc.language.iso eng tr_TR
dc.publisher Pergamon-Elsevier Science LTD tr_TR
dc.relation.isversionof 10.1016/j.chaos.2018.09.036 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Fractional RHE tr_TR
dc.subject Fractional CmKdV tr_TR
dc.subject AB Derivative tr_TR
dc.subject CF tr_TR
dc.subject FHPTM tr_TR
dc.subject Numerical Simulations tr_TR
dc.title Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations tr_TR
dc.type article tr_TR
dc.relation.journal Chaos Solitons & Fractals tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 116 tr_TR
dc.identifier.startpage 220 tr_TR
dc.identifier.endpage 226 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster