DSpace@Çankaya

Weather data analysis and sensor fault detection using an extended ıot framework with semantics, big data, and machine learning

Basit öğe kaydını göster

dc.contributor.author Önal, Aras Can Sezer, Ömer Berat
dc.contributor.author Doğdu, Erdoğan
dc.contributor.author Özbayoğlu, Murat
dc.contributor.author Önal, Aras Can
dc.date.accessioned 2020-03-19T13:06:02Z
dc.date.available 2020-03-19T13:06:02Z
dc.date.issued 2017
dc.identifier.citation Onal, Aras Can...et al. "Weather data analysis and sensor fault detection using an extended ıot framework with semantics, big data, and machine learning, 2017 IEEE International Conference On Big Data (Big Data), pp.2037-2046, (2017). tr_TR
dc.identifier.isbn 978-1-5386-2715-0
dc.identifier.uri http://hdl.handle.net/20.500.12416/2700
dc.description.abstract In recent years, big data and Internet of Things (IoT) implementations started getting more attention. Researchers focused on developing big data analytics solutions using machine learning models. Machine learning is a rising trend in this field due to its ability to extract hidden features and patterns even in highly complex datasets. In this study, we used our Big Data IoT Framework in a weather data analysis use case. We implemented weather clustering and sensor anomaly detection using a publicly available dataset. We provided the implementation details of each framework layer (acquisition, ETL, data processing, learning and decision) for this particular use case. Our chosen learning model within the library is Scikit-Learn based k-means clustering. The data analysis results indicate that it is possible to extract meaningful information from a relatively complex dataset using our framework. tr_TR
dc.language.iso eng tr_TR
dc.publisher IEEE tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Internet Of Things tr_TR
dc.subject Machine Learning tr_TR
dc.subject Framework tr_TR
dc.subject Big Data Analytics tr_TR
dc.subject Weather Data Analysis tr_TR
dc.subject Anomaly Detection tr_TR
dc.subject Fault Detection tr_TR
dc.subject Clustering tr_TR
dc.title Weather data analysis and sensor fault detection using an extended ıot framework with semantics, big data, and machine learning tr_TR
dc.type conferenceObject tr_TR
dc.relation.journal 2017 IEEE International Conference On Big Data (Big Data) tr_TR
dc.identifier.startpage 2037 tr_TR
dc.identifier.endpage 2046 tr_TR
dc.contributor.department Çankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği tr_TR


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster