DSpace@Çankaya

Results for Mild solution of fractional coupled hybrid boundary value problems

Basit öğe kaydını göster

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jafari, Hossein
dc.contributor.author Khan, Hasib
dc.contributor.author Johnston, Sarah Jane
dc.date.accessioned 2020-03-24T07:38:57Z
dc.date.available 2020-03-24T07:38:57Z
dc.date.issued 2015-09-25
dc.identifier.citation Baleanu, Dumitru...et al. (2015). "Results for Mild solution of fractional coupled hybrid boundary value problems", Open Mathematics, Vol.13, pp.601-608. tr_TR
dc.identifier.issn 2391-5455
dc.identifier.uri http://hdl.handle.net/20.500.12416/2717
dc.description.abstract The study of coupled system of hybrid fractional differential equations (HFDEs) needs the attention of scientists for the exploration of its different important aspects. Our aim in this paper is to study the existence and uniqueness of mild solution (EUMS) of a coupled system of HFDEs. The novelty of this work is the study of a coupled system of fractional order hybrid boundary value problems (HBVP) with n initial and boundary hybrid conditions. For this purpose, we are utilizing some classical results, Leray-Schauder Alternative (LSA) and Banach Contraction Principle (BCP). Some examples are given for the illustration of applications of our results. tr_TR
dc.language.iso eng tr_TR
dc.publisher Sciendo tr_TR
dc.relation.isversionof 10.1515/math-2015-0055 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Hybrid Fractional Differential Equations tr_TR
dc.subject Existence And Uniqueness Of Mild Solution tr_TR
dc.subject Leray-Schauder Alternative tr_TR
dc.subject Banach Contraction Principle tr_TR
dc.title Results for Mild solution of fractional coupled hybrid boundary value problems tr_TR
dc.type article tr_TR
dc.relation.journal Open Mathematics tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 13 tr_TR
dc.identifier.startpage 601 tr_TR
dc.identifier.endpage 608 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster