DSpace@Çankaya

Optical Soliton Solutions for The Higher-Order Dispersive Cubic-Quintic Nonlinear Schrodinger Equation

Basit öğe kaydını göster

dc.contributor.author İnç, Mustafa
dc.contributor.author Yusuf, Abdullahi
dc.contributor.author Aliyu, Aliyu Isa
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-03-26T07:55:24Z
dc.date.available 2020-03-26T07:55:24Z
dc.date.issued 2017-12
dc.identifier.issn 0749-6036
dc.identifier.uri http://hdl.handle.net/20.500.12416/2737
dc.description.abstract In this paper, we analyze new optical soliton solutions to the higher-order dispersive cubic-quintic nonlinear Schrodinger equation (NLSE) using three integration schemes. The schemes used in this paper are modified tanh-coth (MTC), extended Jacobi elliptic function expansion (EJEF), and two variable (G '/G,1/G)-expansion methods. We obtain new solutions that to the best of our knowledge do not exist previously. The obtained solutions includes bright, dark, combined bright-dark, singular as well as periodic waves solitons. The obtained solutions may be used to explain and understand the physical nature of the wave spreads in the most dispersive optical medium. Some interesting figures for the physical interpretation of the obtained solutions are also presented. (C) 2017 Elsevier Ltd. All rights reserved. tr_TR
dc.language.iso eng tr_TR
dc.publisher Academic Press LTD- Elsevier Science LTD tr_TR
dc.relation.isversionof 10.1016/j.spmi.2017.08.059 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject NLSE tr_TR
dc.subject MTC Method tr_TR
dc.subject EJEF Method tr_TR
dc.subject G '/G tr_TR
dc.subject 1/G-Expansion Method tr_TR
dc.title Optical Soliton Solutions for The Higher-Order Dispersive Cubic-Quintic Nonlinear Schrodinger Equation tr_TR
dc.type article tr_TR
dc.relation.journal Superlattices and Microstructures tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 112 tr_TR
dc.identifier.startpage 164 tr_TR
dc.identifier.endpage 179 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster