DSpace Repository

A New Glance On the Leibniz Rule for Fractional Derivatives

Show simple item record

dc.contributor.author Sayevand, K.
dc.contributor.author Machado, J. A. Tenreiro
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-03-26T12:32:49Z
dc.date.available 2020-03-26T12:32:49Z
dc.date.issued 2018-09
dc.identifier.citation Sayevand, K.; Machado, J. Tenreiro; Baleanu, D. "A new glance on the Leibniz rule for fractional derivatives", Communications In Nonlinear Science and Numerical Simulation, Vol. 62, pp. 244-249, (2018) tr_TR
dc.identifier.issn 1007-5704
dc.identifier.uri http://hdl.handle.net/20.500.12416/2747
dc.description.abstract This paper proposes a new strategy to study some useful properties of growth rates of functions in C-alpha is an element of R spaces in order to analyze the Leibniz rule for fractional derivatives. The differential operators are taken in the Riemann-Liouville sense. Moreover, stability analysis of the proposed strategy is investigated. The results demonstrate that the proposed theoretical analysis is accurate. (C) 2018 Elsevier B.V. All rights reserved. tr_TR
dc.language.iso eng tr_TR
dc.publisher Elsevier Science BV tr_TR
dc.relation.isversionof 10.1016/j.cnsns.2018.02.037 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Fractional Calculus tr_TR
dc.subject Leibniz Rule tr_TR
dc.subject Mittag-Leffler Function tr_TR
dc.subject Riemann-Liouville tr_TR
dc.subject Fractional Derivative tr_TR
dc.title A New Glance On the Leibniz Rule for Fractional Derivatives tr_TR
dc.type article tr_TR
dc.relation.journal Communications In Nonlinear Science and Numerical Simulation tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 62 tr_TR
dc.identifier.startpage 244 tr_TR
dc.identifier.endpage 249 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record