DSpace@Çankaya

On Some New Properties of Fractional Derivatives With Mittag-Leffler Kernel

Basit öğe kaydını göster

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Fernandez, Arran
dc.date.accessioned 2020-03-27T08:23:50Z
dc.date.available 2020-03-27T08:23:50Z
dc.date.issued 2018-06
dc.identifier.citation Baleanu, Dumitru; Fernandez, Arran, "On some new properties of fractional derivatives with Mittag-Leffler kernel", Communications In Nonlinear Science and Numerical Simulation, Vol. 59, pp. 444-462, (2018) tr_TR
dc.identifier.issn 1007-5704
dc.identifier.uri http://hdl.handle.net/20.500.12416/2766
dc.description.abstract We establish a new formula for the fractional derivative with Mittag-Leffler kernel, in the form of a series of Riemann-Liouville fractional integrals, which brings out more clearly the non-locality of fractional derivatives and is easier to handle for certain computational purposes. We also prove existence and uniqueness results for certain families of linear and nonlinear fractional ODEs defined using this fractional derivative. We consider the possibility of a semigroup property for these derivatives, and establish extensions of the product rule and chain rule, with an application to fractional mechanics. (C) 2017 Elsevier B.V. All rights reserved. tr_TR
dc.language.iso eng tr_TR
dc.publisher Elsevier Science BV tr_TR
dc.relation.isversionof 10.1016/j.cnsns.2017.12.003 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Fractional Calculus tr_TR
dc.subject Ordinary Differential Equations tr_TR
dc.subject Laplace Transforms tr_TR
dc.title On Some New Properties of Fractional Derivatives With Mittag-Leffler Kernel tr_TR
dc.type article tr_TR
dc.relation.journal Communications In Nonlinear Science and Numerical Simulation tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 59 tr_TR
dc.identifier.startpage 444 tr_TR
dc.identifier.endpage 462 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster