dc.contributor.author |
Gomez-Aguilar, J. F.
|
|
dc.contributor.author |
Yepez-Martinez, H.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2020-04-02T19:41:15Z |
|
dc.date.available |
2020-04-02T19:41:15Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
0030-4026 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/2848 |
|
dc.description.abstract |
By using the sub-equation method, we construct the analytical solutions of the space-time generalized nonlinear Schrodinger equation involving the beta-derivative. This equation describing the propagation of ultra-short optical solitons through parabolic law medium. Nonlinear perturbations of higher-order and self-steepening terms are taken into account. As a result, some new exact solutions are constructed under constraint conditions. (C) 2017 Elsevier GmbH. All rights reserved. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Elsevier GMBH, Urban & Fischer Verlag |
tr_TR |
dc.relation.isversionof |
10.1016/j.ijleo.2017.10.104 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Beta-Derivative |
tr_TR |
dc.subject |
Sub-Equation Method |
tr_TR |
dc.subject |
Analytical Solutions |
tr_TR |
dc.subject |
Optical Solitons |
tr_TR |
dc.title |
Beta-Derivative and Sub-Equation Method Applied to The Optical Solitons in Medium With Parabolic Law Nonlinearity and Higher Order Dispersion |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Optik |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
155 |
tr_TR |
dc.identifier.startpage |
357 |
tr_TR |
dc.identifier.endpage |
365 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |