DSpace Repository

Dispersive Optical Solitons and Modulation Instability Analysis of Schrodinger-Hirota Equation With Spatio-Temporal Dispersion and Kerr Law Nonlinearity

Show simple item record

dc.contributor.author İnç, Mustafa
dc.contributor.author Aliyu, Aliyu Isa
dc.contributor.author Yusuf, Abdullahi
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-04-02T19:41:44Z
dc.date.available 2020-04-02T19:41:44Z
dc.date.issued 2018-01
dc.identifier.issn 0749-6036
dc.identifier.uri http://hdl.handle.net/20.500.12416/2850
dc.description.abstract This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrodinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got. (C) 2017 Elsevier Ltd. All rights reserved. tr_TR
dc.language.iso eng tr_TR
dc.publisher Academic Press LTD- Elsevier Science LTD tr_TR
dc.relation.isversionof 10.1016/j.spmi.2017.11.010 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Sine-Gordon Equation Method tr_TR
dc.subject Schrodinger-Hirota Equation tr_TR
dc.subject Optical Solitons tr_TR
dc.subject Modulation Instability Analysis tr_TR
dc.title Dispersive Optical Solitons and Modulation Instability Analysis of Schrodinger-Hirota Equation With Spatio-Temporal Dispersion and Kerr Law Nonlinearity tr_TR
dc.type article tr_TR
dc.relation.journal Superlattices and Microstructures tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 113 tr_TR
dc.identifier.startpage 319 tr_TR
dc.identifier.endpage 327 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record