DSpace Repository

On A Multipoint Boundary Value Problem for A Fractional Order Differential Inclusion On An Infinite Interval

Show simple item record

dc.contributor.author Nyamoradi, Nemat
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Agarwal, Ravi P.
dc.date.accessioned 2020-04-03T10:44:29Z
dc.date.available 2020-04-03T10:44:29Z
dc.date.issued 2013
dc.identifier.citation Nyamoradi, Nemat; Baleanu, Dumitru; Agarwal, Ravi P. "On a Multipoint Boundary Value Problem for a Fractional Order Differential Inclusion on an Infinite Interval", Advances In Mathematical Physics, (2013) tr_TR
dc.identifier.issn 1687-9120
dc.identifier.issn 1687-9139
dc.identifier.uri http://hdl.handle.net/20.500.12416/2886
dc.description.abstract We investigate the existence of solutions for the following multipoint boundary value problem of a fractional order differential inclusion D(0+)(alpha)u(t) + F(t,u(t),u'(t)) (sic) 0, 0 < t < +infinity,u(0) = u'(0) = 0, D(alpha-1)u(+infinity) - Sigma(m-2)(i-1) beta(i)u(xi(i)) = 0, where D-0+(alpha) is the standard Riemann-Liouville fractional derivative, 2 < alpha < 3, 0 < xi(1) < xi(2) < center dot center dot center dot < xi(m-2) < +infinity, satisfies 0 < Sigma(m-2)(i=1) beta(i)xi(alpha-1)(i) < Gamma(alpha), and F : [0, +infinity) x R x R (sic) P(R) is a set-valued map. Several results are obtained by using suitable fixed point theorems when the right hand side has convex or nonconvex values. tr_TR
dc.language.iso eng tr_TR
dc.publisher Hindawi LTD tr_TR
dc.relation.isversionof 10.1155/2013/823961 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Equations tr_TR
dc.subject Existence tr_TR
dc.title On A Multipoint Boundary Value Problem for A Fractional Order Differential Inclusion On An Infinite Interval tr_TR
dc.type article tr_TR
dc.relation.journal Advances In Mathematical Physics tr_TR
dc.contributor.authorID 56389 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record