dc.contributor.author |
Nyamoradi, Nemat
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Agarwal, Ravi P.
|
|
dc.date.accessioned |
2020-04-03T10:44:29Z |
|
dc.date.available |
2020-04-03T10:44:29Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
Nyamoradi, Nemat; Baleanu, Dumitru; Agarwal, Ravi P. "On a Multipoint Boundary Value Problem for a Fractional Order Differential Inclusion on an Infinite Interval", Advances In Mathematical Physics, (2013) |
tr_TR |
dc.identifier.issn |
1687-9120 |
|
dc.identifier.issn |
1687-9139 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/2886 |
|
dc.description.abstract |
We investigate the existence of solutions for the following multipoint boundary value problem of a fractional order differential inclusion D(0+)(alpha)u(t) + F(t,u(t),u'(t)) (sic) 0, 0 < t < +infinity,u(0) = u'(0) = 0, D(alpha-1)u(+infinity) - Sigma(m-2)(i-1) beta(i)u(xi(i)) = 0, where D-0+(alpha) is the standard Riemann-Liouville fractional derivative, 2 < alpha < 3, 0 < xi(1) < xi(2) < center dot center dot center dot < xi(m-2) < +infinity, satisfies 0 < Sigma(m-2)(i=1) beta(i)xi(alpha-1)(i) < Gamma(alpha), and F : [0, +infinity) x R x R (sic) P(R) is a set-valued map. Several results are obtained by using suitable fixed point theorems when the right hand side has convex or nonconvex values. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Hindawi LTD |
tr_TR |
dc.relation.isversionof |
10.1155/2013/823961 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Equations |
tr_TR |
dc.subject |
Existence |
tr_TR |
dc.title |
On A Multipoint Boundary Value Problem for A Fractional Order Differential Inclusion On An Infinite Interval |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Advances In Mathematical Physics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |