DSpace Repository

On exact solutions of a class of fractional Euler-Lagrange equations

Show simple item record

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Trujillo, Juan J.
dc.date.accessioned 2020-04-06T21:19:55Z
dc.date.available 2020-04-06T21:19:55Z
dc.date.issued 2008-06
dc.identifier.citation Baleanu, Dumitru; Trujillo, Juan J., "On exact solutions of a class of fractional Euler-Lagrange equations", Nonlinear Dynamics, Vol.52, No.4, pp.331-335, (2008). tr_TR
dc.identifier.issn 0924-090X
dc.identifier.uri http://hdl.handle.net/20.500.12416/2938
dc.description.abstract In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where D-c(a)t(alpha) x(t)) and 0 < alpha < 1, such that the following is the corresponding Euler-Lagrange D-t(b)alpha(D-c(a)t(alpha))x(t) + b(t, x(t)) ((c)(a)D(t)(alpha)x(t)) + f(t, x(t)) = 0. (1) At last, exact solutions for some Euler-Lagrange equations are presented. In particular, we consider the following equations D-t(b)alpha(D-c(a)t(alpha))x(t) = lambda x(t) (lambda is an element of R), (2) D-t(b)alpha(D-c(a)t(alpha))x(t) + g(t) D-c(a)t(alpha) x(t) = f(t), (3) tr_TR
dc.language.iso eng tr_TR
dc.publisher Springer tr_TR
dc.relation.isversionof 10.1007/s11071-007-9281-7 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Fractional Calculus tr_TR
dc.subject Differential Equations Of Fractional Order tr_TR
dc.subject Fractional Variational Calculus tr_TR
dc.title On exact solutions of a class of fractional Euler-Lagrange equations tr_TR
dc.type article tr_TR
dc.relation.journal Nonlinear Dynamics tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 52 tr_TR
dc.identifier.issue 4 tr_TR
dc.identifier.startpage 331 tr_TR
dc.identifier.endpage 335 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record