dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Trujillo, Juan J.
|
|
dc.date.accessioned |
2020-04-06T21:19:55Z |
|
dc.date.available |
2020-04-06T21:19:55Z |
|
dc.date.issued |
2008-06 |
|
dc.identifier.citation |
Baleanu, Dumitru; Trujillo, Juan J., "On exact solutions of a class of fractional Euler-Lagrange equations", Nonlinear Dynamics, Vol.52, No.4, pp.331-335, (2008). |
tr_TR |
dc.identifier.issn |
0924-090X |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/2938 |
|
dc.description.abstract |
In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where D-c(a)t(alpha) x(t)) and 0 < alpha < 1, such that the following is the corresponding Euler-Lagrange
D-t(b)alpha(D-c(a)t(alpha))x(t) + b(t, x(t)) ((c)(a)D(t)(alpha)x(t)) + f(t, x(t)) = 0. (1)
At last, exact solutions for some Euler-Lagrange equations are presented. In particular, we consider the following equations
D-t(b)alpha(D-c(a)t(alpha))x(t) = lambda x(t) (lambda is an element of R), (2)
D-t(b)alpha(D-c(a)t(alpha))x(t) + g(t) D-c(a)t(alpha) x(t) = f(t), (3) |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Springer |
tr_TR |
dc.relation.isversionof |
10.1007/s11071-007-9281-7 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Fractional Calculus |
tr_TR |
dc.subject |
Differential Equations Of Fractional Order |
tr_TR |
dc.subject |
Fractional Variational Calculus |
tr_TR |
dc.title |
On exact solutions of a class of fractional Euler-Lagrange equations |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Nonlinear Dynamics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
52 |
tr_TR |
dc.identifier.issue |
4 |
tr_TR |
dc.identifier.startpage |
331 |
tr_TR |
dc.identifier.endpage |
335 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |