Abstract:
With the use of the general beam formulation, the modulus of the complex degree of coherence for partially coherent cosh-Gaussian, cos-Gaussian, Gaussian, annular and higher-order Gaussian optical beams is evaluated in atmospheric turbulence. For different propagation lengths in horizontal atmospheric links, the moduli of the complex degree of coherence at the source and receiver planes are examined when reference points are taken on the receiver axis and off-axis. In the on-axis case, it is observed that in propagation, the moduli of the complex degree of coherence are symmetrical and look like the intensity profile of the related coherent beam propagating in a turbulent atmosphere. For all the beams considered, the moduli of the complex degree of coherence profiles turn into Gaussian shapes beyond certain propagation lengths. In the off-axis case, the moduli of complex degree of coherence patterns become drifted at the earlier propagation lengths. Among the beams investigated, the cos-Gaussian beam is found to be almost independent of the changes in the source partial coherence parameter, and the annular beam seems to be affected the most against the variations of the source partial coherence parameter.