Özet:
In this work, a theoretical study of diffusion of neumatic liquid crystals was done using the concept of fractional order derivative. This version of fractional derivative is very easy to handle and obey to almost all the properties satisfied by the conventional Newtonian concept of derivative. The mathematical equation underpinning this physical phenomenon was solved analytically via the so-called homotopy decomposition method. In order to show the accuracy of this iteration method, we constructed a Hilbert space in which we proved its stability for the time-fractional Hunder-Saxton equation.