Abstract:
The intensity fluctuations of incoherent flat-topped Gaussian beams are evaluated when such sources are used in weakly turbulent horizontal atmospheric links. The formulation is developed for a detector having a response time much longer than the source coherence time. The flat-topped Gaussian profile is obtained by superposing many Gaussian beams, then the incoherence is introduced through delta correlation in space. The scintillation index of the incoherent flat-topped Gaussian beams is found to be smaller than the scintillation index of the corresponding incoherent Gaussian beams at the same link length, source size, and wavelength. When compared with the coherent counterparts, the intensity fluctuations of the incoherent flat-topped Gaussian beams are much smaller, yielding the same value only at the spherical wave limit, as expected. Transmitter aperture averaging is a special case of our solution.