DSpace Repository

The convolution of functions and distributions

Show simple item record

dc.contributor.author Fisher, Brian
dc.contributor.author Taş, Kenan
dc.date.accessioned 2020-04-16T21:05:06Z
dc.date.available 2020-04-16T21:05:06Z
dc.date.issued 2005-06-01
dc.identifier.citation Fisher, B.; Taş, K., "The convolution of functions and distributions", Journal Of Mathematical Analysis And Applications, Vol.306, No.1, pp.364-374, (2005). tr_TR
dc.identifier.issn 0022-247X
dc.identifier.uri http://hdl.handle.net/20.500.12416/3223
dc.description.abstract The non-commutative convolution f * g of two distributions f and g in V is defined to be the limit of the sequence {(f tau(n)) * g}, provided the limit exists, where {tau(n)} is a certain sequence of functions in D converging to 1. It is proved that vertical bar x vertical bar(lambda) * (sgnx vertical bar x vertical bar(mu)) = 2 sin(lambda pi/2)cos(mu pi/2)/sin[(lambda+mu)pi/2] B(lambda+1, mu+1) sgn x vertical bar x vertical bar(lambda+mu+1), for -1 < lambda + mu < 0 and lambda, mu not equal -1, -2,..., where B denotes the Beta function. tr_TR
dc.language.iso eng tr_TR
dc.publisher Academic Press INC Elsevier Science tr_TR
dc.relation.isversionof 10.1016/j.jmaa.2005.01.004 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Distribution tr_TR
dc.subject Dirac Delta Function tr_TR
dc.subject Convolution tr_TR
dc.title The convolution of functions and distributions tr_TR
dc.type article tr_TR
dc.relation.journal Journal Of Mathematical Analysis And Applications tr_TR
dc.contributor.authorID 4971 tr_TR
dc.identifier.volume 306 tr_TR
dc.identifier.issue 1 tr_TR
dc.identifier.startpage 364 tr_TR
dc.identifier.endpage 374 tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record