dc.contributor.author |
Fisher, Brian
|
|
dc.contributor.author |
Taş, Kenan
|
|
dc.date.accessioned |
2020-04-16T21:05:06Z |
|
dc.date.available |
2020-04-16T21:05:06Z |
|
dc.date.issued |
2005-06-01 |
|
dc.identifier.citation |
Fisher, B.; Taş, K., "The convolution of functions and distributions", Journal Of Mathematical Analysis And Applications, Vol.306, No.1, pp.364-374, (2005). |
tr_TR |
dc.identifier.issn |
0022-247X |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3223 |
|
dc.description.abstract |
The non-commutative convolution f * g of two distributions f and g in V is defined to be the limit of the sequence {(f tau(n)) * g}, provided the limit exists, where {tau(n)} is a certain sequence of functions in D converging to 1. It is proved that
vertical bar x vertical bar(lambda) * (sgnx vertical bar x vertical bar(mu)) = 2 sin(lambda pi/2)cos(mu pi/2)/sin[(lambda+mu)pi/2] B(lambda+1, mu+1) sgn x vertical bar x vertical bar(lambda+mu+1),
for -1 < lambda + mu < 0 and lambda, mu not equal -1, -2,..., where B denotes the Beta function. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Academic Press INC Elsevier Science |
tr_TR |
dc.relation.isversionof |
10.1016/j.jmaa.2005.01.004 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Distribution |
tr_TR |
dc.subject |
Dirac Delta Function |
tr_TR |
dc.subject |
Convolution |
tr_TR |
dc.title |
The convolution of functions and distributions |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal Of Mathematical Analysis And Applications |
tr_TR |
dc.contributor.authorID |
4971 |
tr_TR |
dc.identifier.volume |
306 |
tr_TR |
dc.identifier.issue |
1 |
tr_TR |
dc.identifier.startpage |
364 |
tr_TR |
dc.identifier.endpage |
374 |
tr_TR |