DSpace Repository

Fractional Euler-Lagrange equations for constrained systems

Show simple item record

dc.contributor.author Avkar, Tansel
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2020-04-18T13:25:44Z
dc.date.available 2020-04-18T13:25:44Z
dc.date.issued 2004
dc.identifier.citation Avkar, T.; Baleanu, Dumitru, "Fractional Euler-Lagrange equations for constrained systems" Global Analysis and Applied Mathematics, Vol.729, pp.84-90, (2004). tr_TR
dc.identifier.isbn 0-7354-0209-4
dc.identifier.issn 0094-243X
dc.identifier.uri http://hdl.handle.net/20.500.12416/3322
dc.description.abstract The fractional calculus is the name for the theory of integrals and derivatives of arbitrary order, which generalize the notions of n-fold integration and integer-order differentiation. Differential equations of fractional order appear in certain applied problems and in theoretical researches. In this paper, the Euler-Lagrange equations of the Lagrangians linear in velocities were derived using the fractional calculus. Two examples of constrained systems possessing a gauge invariance are investigated in details, the explicit solutions of Euler-Lagrange equations are obtained, and the recovery of the classical results is discussed. tr_TR
dc.language.iso eng tr_TR
dc.publisher Amer Inst Physics tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Riemann-Liouville Fractional Derivative tr_TR
dc.subject Constrained Systems tr_TR
dc.subject Fractional Euler-Lagrange Equations tr_TR
dc.title Fractional Euler-Lagrange equations for constrained systems tr_TR
dc.type workingPaper tr_TR
dc.relation.journal Global Analysis and Applied Mathematics tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 729 tr_TR
dc.identifier.startpage 84 tr_TR
dc.identifier.endpage 90 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen-Edebiyat Fakültesi,Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record