dc.contributor.author |
Avkar, Tansel
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2020-04-18T13:25:44Z |
|
dc.date.available |
2020-04-18T13:25:44Z |
|
dc.date.issued |
2004 |
|
dc.identifier.citation |
Avkar, T.; Baleanu, Dumitru, "Fractional Euler-Lagrange equations for constrained systems" Global Analysis and Applied Mathematics, Vol.729, pp.84-90, (2004). |
tr_TR |
dc.identifier.isbn |
0-7354-0209-4 |
|
dc.identifier.issn |
0094-243X |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3322 |
|
dc.description.abstract |
The fractional calculus is the name for the theory of integrals and derivatives of arbitrary order, which generalize the notions of n-fold integration and integer-order differentiation. Differential equations of fractional order appear in certain applied problems and in theoretical researches. In this paper, the Euler-Lagrange equations of the Lagrangians linear in velocities were derived using the fractional calculus. Two examples of constrained systems possessing a gauge invariance are investigated in details, the explicit solutions of Euler-Lagrange equations are obtained, and the recovery of the classical results is discussed. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Amer Inst Physics |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Riemann-Liouville Fractional Derivative |
tr_TR |
dc.subject |
Constrained Systems |
tr_TR |
dc.subject |
Fractional Euler-Lagrange Equations |
tr_TR |
dc.title |
Fractional Euler-Lagrange equations for constrained systems |
tr_TR |
dc.type |
workingPaper |
tr_TR |
dc.relation.journal |
Global Analysis and Applied Mathematics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
729 |
tr_TR |
dc.identifier.startpage |
84 |
tr_TR |
dc.identifier.endpage |
90 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen-Edebiyat Fakültesi,Matematik Bölümü |
tr_TR |