Abstract:
The reactive channel of the D(2) (v, j) + Ni(n) (T) (n = 54, 55, 56) collision system is studied via quasiclassical molecular dynamics simulations. The cluster is described using an embedded-atom potential, and the interaction between the molecule and the cluster is modeled by a LEPS (London-Eyring-Polanyi-Sato) potential energy function. Dissociative chemisorption probabilities are computed as functions of the impact parameter and the collision energy, and are used to evaluate the reaction cross-sections. Effects of the initial rovibrational states of the molecule and the temperatures of the clusters on the reactive channel are analyzed. Reaction rate constants are also computed and compared with those measured experimentally.