dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Garra, R.
|
|
dc.contributor.author |
Petras, I.
|
|
dc.date.accessioned |
2020-04-28T21:28:58Z |
|
dc.date.available |
2020-04-28T21:28:58Z |
|
dc.date.issued |
2013-08 |
|
dc.identifier.citation |
Baleanu, Dumitru; Garra, R.; Petras, I. "A Fractional Variational Approach to the Fractional Basset-Type Equation", Reports On Mathematical Physics, Vol. 72, No. 1, pp. 57-64, (2013). |
tr_TR |
dc.identifier.issn |
00344877 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3490 |
|
dc.description.abstract |
In this paper we discuss an application of fractional variational calculus to the Basset-type fractional equations. It is well known that the unsteady motion of a sphere immersed in a Stokes fluid is described by an integro-differential equation involving derivative of real order. Here we study the inverse problem, i.e. We consider the problem from a Lagrangian point of view in the framework of fractional variational calculus. In this way we find an application of fractional variational methods to a classical physical model, finding a Basset-type fractional equation starting from a Lagrangian depending on derivatives of fractional order. © 2013 Polish Scientific Publishers. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1016/S0034-4877(14)60004-5 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Basset Equation |
tr_TR |
dc.subject |
Calculus of Variations |
tr_TR |
dc.subject |
Fractional Calculus |
tr_TR |
dc.title |
A Fractional Variational Approach to the Fractional Basset-Type Equation |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Reports On Mathematical Physics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
72 |
tr_TR |
dc.identifier.issue |
1 |
tr_TR |
dc.identifier.startpage |
57 |
tr_TR |
dc.identifier.endpage |
64 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |