DSpace Repository

The Existence of Solutions For Some Fractional Finite Difference Equations Via Sum Boundary Conditions

Show simple item record

dc.contributor.author Agarwal, Ravi P.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rezapour, Shahram
dc.contributor.author Salehi, Saeid
dc.date.accessioned 2020-04-29T22:49:38Z
dc.date.available 2020-04-29T22:49:38Z
dc.date.issued 2014-10-31
dc.identifier.issn 1687-1847
dc.identifier.uri http://hdl.handle.net/20.500.12416/3527
dc.description.abstract In this manuscript we investigate the existence of the fractional finite difference equation (FFDE) Delta(mu)(mu-2)x(t) = g(t + mu - 1, x(t + mu - 1), Delta x(t + mu - 1)) via the boundary condition x(mu - 2) = 0 and the sum boundary condition x(mu + b + 1) = Sigma(alpha)(k=mu-1) x(k) for order 1 < mu <= 2, where g : N-mu-1(mu+b+1) x R x R -> R, alpha is an element of N-mu-1(mu+b), and t is an element of N-0(b+2). Along the same lines, we discuss the existence of the solutions for the following FFDE: Delta(mu)(mu-3)x(t) = g(t + mu - 2, x(t + mu - 2)) via the boundary conditions x(mu - 3) = 0 and x(mu + b + 1) = 0 and the sum boundary condition x(alpha) = Sigma(beta)(k=gamma)x(k) for order 2 < mu <= 3, where g : N-mu-2(mu+b+1) x R -> R, b is an element of N-0, t is an element of N-0(b+3), and alpha, beta,gamma N-mu-2(mu+b) with gamma < beta < alpha. tr_TR
dc.language.iso eng tr_TR
dc.publisher Springer Open tr_TR
dc.relation.isversionof 10.1186/1687-1847-2014-282 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Fractional Finite Difference Equation tr_TR
dc.subject Fixed Point tr_TR
dc.title The Existence of Solutions For Some Fractional Finite Difference Equations Via Sum Boundary Conditions tr_TR
dc.type article tr_TR
dc.relation.journal Advances In Difference Equations tr_TR
dc.contributor.authorID 56389 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record